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Traditionally, the phase and group velocities of water waves can be increased by increasing water depth
but possess upper bounds, which are related to the gravitational acceleration and difficult to exceed. Here,
we theoretically propose and experimentally demonstrate that when water is covered with a periodic array
of stationary rigid disks, both the gravitational acceleration and reduced water depth can be effectively
increased in the lowest frequency band. As a result, fast water waves can occur in the system, with both the
phase and group velocities exceeding those in water without disks. Unusual effects, such as total reflection
at oblique incidence and unidirectional transmission of water waves, are further realized.
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Water waves are mechanical waves propagating along
the surface of water, and the restoring force is provided by
gravity [1,2]. Understanding and controlling of the propa-
gation of water waves are of great significance in both
hydrodynamics and ocean engineering [1,2]. A fundamen-
tal property of water waves is the dispersion ωðk0Þ, from
which the phase velocity v0;p ≡ ω=k0 and group velocity
v0;g ≡ ∂ω=∂k0 can be derived, where ω is the angular
frequency, k0 ≡ 2π=λ0 is the wave number, and λ0 is the
wavelength. For a fixed angular frequency ω, the phase and
group velocities of linear water waves can be increased
with increasing the water depth h0, but possess upper
bounds

v0;p < g0=ω; v0;g < αg0=ω; ð1Þ

where α ¼ 0.5998 and g0 is the gravitational acceleration
[see Fig. 1(a)]. Such upper bounds of velocities, first
established by Airy in 1841 [3], are valid for various
frequencies and difficult to exceed.
Recently, the interaction of water waves with periodic

structures, such as rippled bottoms, vertical cylinder arrays,
and resonator arrays, has received much attention [4–24].
In such periodic systems, the dispersion of water waves is
modified as ωðkeÞ with ke being the Bloch wave number,
which is also called band structures [6–15]. Since ke is
restricted to the reduced Brillouin zone, the phase velocity,
given by ve;p ≡ ω=ke, can exceed that (v0;p) in water
without structures in high frequency bands. However, for
the lowest frequency band, the phase velocity remains
lower than that in water without structures. In addition, the
group velocity, given by ve;g ≡ ∂ω=∂ke, cannot exceed
that (v0;g) in water without structures for all the frequency
bands [16–24]. As a result, long water waves are usually

slowed down when periodic structures are introduced
in water.
In this Letter, we theoretically propose and experimen-

tally demonstrate that when water is covered with a
periodic array of stationary rigid disks, both the gravita-
tional acceleration and reduced water depth can be effec-
tively increased (ge > g0, ue > u0) in the lowest frequency
band. As a result, both the phase and group velocities of
long water waves can exceed those in water without disks
[see Fig. 1(b)]. Unusual effects, such as total reflection at
oblique incidence and unidirectional transmission, are
further realized in water waves.

FIG. 1. Phase and group velocities of water waves with angular
frequency ω. (a) Phase velocity v0;p and group velocity v0;g of
water waves as functions of water depth h0 in water without
structures. (b) Ratios of ve;p=v0;p and ve;g=v0;g as functions of h0,
with ve;p and ve;g being the phase and group velocities of water
waves in water covered with a square lattice of stationary rigid
disks. The radius of disk r ¼ 0.35a, the period of the array
a ≪ g0=ω2, and the water depth under the disks h1 ≈ h0.
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We consider linear, inviscid, and irrotational water waves
in water covered with a square lattice of circular rigid
disks, which are mounted below a stationary rigid board, as
shown in Figs. 2(a) and 2(b). The disks have a radius r,
period a, filling ratio fs ¼ πr2=a2, and thickness larger
than the amplitude of water waves. The water regions with
a free surface and under the disks have a depth h0 and h1,
respectively, where h1 < h0. Set r ¼ ðx; yÞ in the horizon-
tal plane and z as the vertical axis.
For harmonic water waves, a velocity potential

Φjðr; zÞe−iωt can be introduced, so that ∇Φj and
∂Φj=∂z are the velocity of water particle in the horizontal
and vertical directions with ∇≡ ð∂=∂x; ∂=∂yÞ, where j ¼
0 and 1 for the water regions with a free surface and under
the disks, respectively. Φj satisfies the three-dimensional
Laplace’s equation [1,2]

∇2Φj þ
∂2Φj

∂2z
¼ 0; ð2Þ

subjected to the boundary condition of ∂Φj=∂z ¼ 0 at the
bottom (z ¼ 0). ∂Φ0=∂z ¼ ðω2=g0ÞΦ0 at the air-water
interface (z ¼ h0), while ∂Φ1=∂z ¼ 0 at the disk-water
interface (z ¼ h1) which can also be written as ∂Φ1=∂z ¼
ðω2=g1ÞΦ1 with g1 ¼ ∞. Therefore, we have Φjðr; zÞ ¼
φjðrÞ coshðkjzÞ= coshðkjhjÞ with φj satisfying the two-
dimensional Helmholtz equation

∇2φj þ k2jφj ¼ 0: ð3Þ

The wave number kj can be obtained from the dispersion

ω ¼ ffiffiffiffiffiffiffiffiffi
gjuj

p
kj ð4Þ

with the reduced water depth

uj ¼ ½tanhðkjhjÞ�=kj: ð5Þ
Since a stationary solution is sought, the frequency ω is the
same in all the regions. The dispersion can also be written
as ω2 ¼ gjkj tanhðkjhjÞ. For a given angular frequency ω,
two real numbers of kj and many imaginary ones can be
obtained from the dispersion, corresponding to propagating
and evanescent waves, respectively. In the following, we
will only consider the propagating waves, so that the flow

can be expressed as Sj ≡ R hj
0 ð∇ΦjÞdz ¼ uj∇φj. At the

interface between different water regions, both the potential
φj and flow uj∇φj should be continuous. Although the
evanescent waves are neglected, the results remain high
accuracy for k0 < 0.5π=a [25].
We note that the vertical vibration of the upper surface of

water ηjðr; tÞ ¼ Re½iφjðrÞe−iωtω=gj�. For water under
disks, k1 ¼ 0 and u1 ¼ h1. For water with a free surface,
u0 ≈ h0 for h0 ≪ g0=ω2 but u0 < g0=ω2, giving rise to the
upper bounds of velocities in Eq. (1).
We then derive analytic formulas for the effective

parameters (ge, ue) of the periodic system with the
coherent-potential-approximation method [16,18,26]. We
consider a circular water column with radius R ¼ a=

ffiffiffi
π

p

FIG. 2. Propagation of water waves in water covered with a square lattice of stationary rigid disks. The period of array is a. (a) and
(b) Side and vertical views of the periodic system. (c) and (d) Side and vertical views of a water column which is covered with a
stationary rigid disk and surrounded by an effective liquid. (e) Dispersion of water waves in the periodic system, where k0 is the wave
number in water without disks, the Bloch wave vector Q is in the x direction, and ke ¼ jQj. (f) Ratios of ve;p=v0;p and ve;g=v0;g as
functions of k0. (g) Ratios of ge=g0 and ue=u0 and (h) refractive index n and impedance Z of the periodic system as functions of k0. The
red rigid board above the disks are not shown in (b) and (d). In (e)–(h), the radius of disk r ¼ 0.35a and the water depth h1 ≈ h0 ¼ 10a.
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(so that πR2 ¼ a2) and height h1, which is covered with a
stationary rigid disk of radius r and surrounded by an
effective liquid with parameters (ge, ue, he, ke), as shown in
Figs. 2(c) and 2(d). The liquid waves in the effective liquid
can also be described by Eqs. (2)–(5) but with j ¼ e, where
the dispersion is given by

ω ¼ ffiffiffiffiffiffiffiffiffi
geue

p
ke ð6Þ

with ue ¼ ½tanhðkeheÞ�=ke. By using the cylindrical co-
ordination (ρ, θ) with the origin at the center of the disk,
we have φ1 ¼

P
m GmJmðk1ρÞeimθ for region I (ρ ≤ r),

φ0 ¼
P

m½EmJmðk0ρÞ þ FmHmðk0ρÞ�eimθ for region II
(r≤ρ≤R), and φe ¼

P
m½AmJmðkeρÞ þ BmHmðkeρÞ�eimθ

for region III (ρ ≥ R). Here, the Bessel (Hankel) func-
tion Jm (Hm) represents the mth cylindrical incident
(scattering) wave. At the interfaces between different
water regions, both the potential φj and flow uj∇φj

should be continuous [φ1ðrÞ ¼ φ0ðrÞ, φ0ðRÞ¼φeðRÞ,
u1½∂φ1ðrÞ=∂ρ� ¼ u0½∂φ0ðrÞ=∂ρ�, and u0½∂φ0ðRÞ=∂ρ� ¼
ue½∂φeðRÞ=∂ρ�]. It can thus be shown that scattering waves
cannot be generated in the effective medium (Bm ¼ 0
which defines the effective medium) when

−
u0k0J0mðk0RÞ − Jmðk0RÞTe;m

u0k0H0
mðk0RÞ −Hmðk0RÞTe;m

¼ −
u0k0J0mðk0rÞ − Jmðk0rÞT1;m

u0k0H0
mðk0rÞ −Hmðk0rÞT1;m

ð7Þ

where Te;m¼uekeJ0mðkeRÞ=JmðkeRÞ, T1;m¼u1k1J0mðk1rÞ=
Jmðk1rÞ, and the second term is the mth order scattering
coefficient (Dm ≡ Fm=Em) of the water column under the
disk. When k0a, kea ≪ 1 [25], Eq. (7) with the two lowest
orders (m ¼ 0 and 1) becomes

ge ¼ g0=ð1 − fsÞ; ue ¼ u0ð1þ pÞ=ð1 − pÞ; ð8Þ

where p ¼ fsðu1 − u0Þ=ðu1 þ u0Þ. For stationary surface
disk arrays (u1 ¼ h1≈h0), we have u0 < ue < u0ð1þ fsÞ=
ð1 − fsÞ. For bottom-mounted rigid cylinder arrays
(u1¼h1¼0),wehave ge¼g0=ð1−fsÞ andue¼u0ð1−fsÞ=
ð1þfsÞ, consistent with our previous derivations [16].
The ratios of the phase and group velocities in the disk

array to those without disks can be expressed as

ve;p
v0;p

¼ k0
ke

;
ve;g
v0;g

¼ ∂k0
∂ke : ð9Þ

Since ke¼nk0 and the refractive index n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0u0=ðgeueÞ

p
,

we have ve;p=v0;p¼1=n andve;g=v0;g¼1=½nþk0ð∂n=∂k0Þ�.
When ∂n=∂k0 ¼ 0, ve;p=v0;p ¼ ve;g=v0;g. But if
∂n=∂k0 ≠ 0, the two ratios of velocities can be completely
different. Therefore, for water waves in water pierced with a

bottom-mounted split-tube array, ve;p ≫ v0;p but ve;g ≈ 0

above the resonant band gap [25].
The ratios of velocities can be calculated with using

Eq. (8), as shown in Fig. 1(b). For a fixed angular frequency
ω, the phase and group velocities of long water waves in the
stationary rigid disk array increase with increasing the
water depth, but possess upper bounds

ve;p < βg0=ω; ve;g < γg0=ω: ð10Þ

Since β ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ fs

p
=ð1 − fsÞ, γ > α, and γ ¼ β=2 for

fs > 0.37, such upper bounds can exceed those in
Eq. (1) for water with a free surface.
To check the accuracy of the analytic formulas above, we

use the multiple scattering method (MSM), which includes
high order cylindrical waves, to numerically calculate the
dispersion of water waves in the periodic disk array
[11,12,16]. Figure 2(e) shows the dispersion k0ðkeÞ of
Bloch water waves in water covered with a stationary rigid
disk array, where r ¼ 0.35a, h1 ≈ h0 ¼ 10a, ke ¼ jQj, and
the Bloch wave vector Q is in the x direction. The value of
k0 is independent of the direction of Q for k0 < 1.4π=a.
The dispersion of water waves in the system is also
obtained by Eqs. (6) and (8), as shown as the red line in
Fig. 2(e). Excellent agreement can be seen between the
numerical and analytical results, especially in low frequen-
cies (k0 < π=a). Figure 2(f) shows the ratios of ve;p=v0;p
and ve;g=v0;g in the disk array. The velocity ratios are 1.28
at zero frequency, and they can increase with increasing
frequency and be about 1.9 in high frequencies.
Figure 2(g) shows the effective parameters (ge, ue) for

the above system. We can see that in the lowest frequency
band, ge ¼ 1.63g0 and ue=u0 increases from 1 to 2.17 with
increasing the frequency. Hence, both the phase and group
velocities of long water waves in the disk array can exceed
those in water without disks. Using the ge and ue, the
refractive index n and impedance Z ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ueg0=ðgeu0Þ
p

can
also be obtained for the system [Fig. 2(h)]. As the
frequency increases, the impedance Z increases from
0.78 to 1.16, while the refractive index n decreases from
0.78 to 0.53.
When a plane water wave propagates from water with

a free surface to that covered with a stationary rigid
disk array, reflection and refraction of waves will occur
at the surface of the disk array. The corresponding
amplitude reflection coefficient rA ¼ ðcos θi − Z cos θrÞ=
ðcos θi þ Z cos θrÞ, where θi and θr are the incident
and refraction angles following the Snell law of
sin θi ¼ n sin θr. Since 0 < n < 1, total reflection of water
waves can occur for incident angles above a critical
angle θc ¼ arcsinðnÞ.
To verify the above prediction, we perform multiple-

scattering simulations, which solve the stationary problems
for impinging a plane water wave upon a ten-layer array of
surface disks on the water, with parameters of k0 ¼ 0.4π=a,
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r ¼ 0.35a, and h1≈h0¼10a. For incident angles θi ¼ 10°,
20°, 30°, transmitted waves occur in the disk array, with
refraction angles θr ¼ 18°, 38°, 64° [Figs. 3(a)–3(c)]. Water
waves can be totally reflected at θi ¼ 40°, resulting in
interference pattern above the disk array [Fig. 3(d)]. Such
simulated patterns agree well with analytic results shown in
Figs. 3(e) and 3(f). Here, the disk array has a refractive
index n ¼ 0.56 and critical angle θc ¼ 33.9°. Since the
impedance is close to unity (Z ¼ 1.10), the reflection at the
surface of the disk array is less than 8% for θi < 30°,
benefiting the construction of transmission-type devices for
water waves.
Based on the above results, more fascinating effects,

such as unidirectional water-wave transmission, can be
proposed and experimentally verified, as shown in Fig. 4.
Here, we adopted a vessel with a transparent bottom and
slanted sides, so that reflected waves will not be generated
at the boundaries. Water is placed in the vessel and then
covered with a stationary rigid disk array with an isosceles
right triangle shape, where the depth h0 ¼ 10 cm and h1 ¼
9.9 cm [Fig. 4(a)]. The array consists of 465 rigid disks
with r ¼ 3.5 mm, a ¼ 10 mm, and height of 8 mm, which
is mounted on a rigid board and fabricated with polylactic
acid (PLA) by means of 3D-printing technology [Fig. 4(b)].
A Gaussian water-wave beam with width of 28 cm and
wavelength λ0 ¼ 50 mm serves as the wave source. By
using a projection apparatus [12,14,17,22], the wave
patterns are visualized on a screen [Fig. 4(a)]. When water
wave is incident on the hypotenuse of the disk array from
the left, the incident angle is larger than the critical angle.
As a result, total reflection occurs, leading to interference
pattern above the disk array [Fig. 4(c)]. However, as the

water wave is impinged on the array from the right,
transmission can occur. The outgoing wave is refracted
at the hypotenuse of the array and not along the original
direction [Fig. 4(d)]. Figures. 4(e) and 4(f) show the
simulated wave patterns based on the multiple-scattering
method. The simulated refraction angle in Fig. 4(f) is 25°,
agreeing well with the experimental value of 24° in
Fig. 4(d).
Fast water waves are reminiscent of superluminal effects

in electromagnetics. If g−1, u−1, and φ are changed to
permeability μ, permittivity ε, and magnetic field Hz,
Eqs. (3) and (4) combined with the continuities of φj

and uj∇φj are also valid for transverse-electric waves in
2D metamaterials. However, since appropriate constituent
materials are not available, superluminal effects cannot be
realized in transparent metamaterials and they have usually
been observed in gain materials [27,28].
In summary, we have demonstrated that long water

waves propagate in water covered with a periodic array
of stationary rigid disks as if it has larger magnitudes of the
effective gravitational acceleration ge and the effective
depth ue given by Eq. (8). Since ge > g0 and ue > u0 in

FIG. 3. Impinging of a plane water wave upon a water region
covered with a ten-layer array of stationary rigid disks. The
parameters are r ¼ 0.35a, h1 ≈ h0 ¼ 10a, and k0 ¼ 0.4π=a. The
disk array extends to infinity in the x direction. (a)–(d) Simulated
patterns of ReðφÞ in the x-y plane at different incident angles
θi ¼ 10°, 20°, 30°, 40°. (e) Refraction angle θr and (f) reflectance
at the surface of the disk array as a function of incident angle θi. FIG. 4. Unidirectional transmission of water waves through

water covered with a stationary rigid disk array with an isosceles
right triangle shape. The parameters areh0 ¼ 10 cm,h1 ¼ 9.9 cm,
r ¼ 3.5 mm, a ¼ 10 mm, and λ0 ¼ 50 mm. (a) Schematic dia-
gram of the experimental setup. Water is placed in a vessel with a
transparent bottomand slanted sides.Using amirror and collimated
light, the pattern of water waves can be projected onto a screen.
(b) Photograph of the disk array which consists of 465 PLA disks
mounted on a rigid board. (c) and (d) Photographs ofwave patterns.
(e) and (f) Simulated patterns of ReðφÞ in the x-y plane. Water
waves are incident from the left of the array in (c) and (e),while they
are from the right in (d) and (f).
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the lowest frequency band, fast water waves can occur in
the system, with both the phase and group velocities
exceeding those in water without structures. Conse-
quently, unusual effects, such as total reflection at oblique
incidence and unidirectional transmission, have been real-
ized in water waves. We anticipate that more effects and
devices of water waves can be proposed and realized in
water covered with stationary rigid disk arrays, and they
could find applications in coastal protection and ocean
wave energy extraction [29,30].
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